Superresolution Traction Force Mapping with Structured Illumination Molecular Force Microscopy
نویسندگان
چکیده
منابع مشابه
Superresolution Structured Illumination Microscopy (SR-SIM)
How Superresolution with ELYRA S.1 works The resolving power of a light microscope is limited to approximately 200nm in the lateral (XY) and 500nm in the axial (Z) direction. This so-called diffraction limit has been fi rst described by Ernst Abbe in 1873 (reference 1) and still holds true today. In simple terms, it posits that objects cannot be resolved with a conventional light microscope if ...
متن کامل3D Viscoelastic traction force microscopy.
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, whi...
متن کاملHigh-resolution traction force microscopy.
Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental...
متن کاملSuper-Resolved Traction Force Microscopy (STFM)
Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing th...
متن کاملTraction force microscopy of engineered cardiac tissues
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2020
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2019.11.1849